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The equation of radiative transfer for a Stokes’ intensity vector is used to define a four- 
vector Green’s function. The physical quantities of interest are represented by a response 
vector which is found by integrating the product of a suitable response matrix and the 
Stokes’ intensity vector over phase space. Equations adjoint to those for the Stokes’ intensity 
vector and for the Green’s function vector are given. The response vector is then expressed 
in terms of the adjoint vector Green’s function. A Monte Carlo sampling procedure is 
given for the adjoint Green’s function vector equation. When the adjoint source vector 
is given by a Dirac delta function in phase space, the response vector is the Stokes’ intensity 
vector and the “backward Monte Carlo method” of Collins and Wells (Report RRA-T74, 
Radiation Research Associates, Inc.) obtains. 

1. INTRODUCTION 

The speed and versatility of the modern digital computer have enabled the solution 
of a variety of radiative transfer problems. A calculation tool, which is often used for 
solving these problems, is random sampling with the Monte Carlo method. The 
flexibility of Monte Carlo allows the solution of three-dimensional geometries, the 
treatment of complicated interaction phenomena, and the use of otherwise difficult 
boundary conditions. 

The Monte Carlo method has been utilized to include polarization effects by 
Kastner [2], Cashwell [3], Collins and Wells [l], Sandford and Pauls [4], Collins et al. 
[5], Mikhaylov and Nazaraliyev [6], and by a number of other investigators. The 
statistical errors in such calculations become large when information is required 
in a small portion of phase space. A pertinent example is the determination of 
Stokes’ intensities in a given direction at a receiver position. The paper by Collins et al. 
[5] presents a “backward” Monte Carlo technique that overcomes this difficulty. 
In this calculational method, the four Stokes’ parameters, I! ,I, , U, V, that character- 
ize the radiation at a receiver position were evaluated by a backward simulation of the 
radiation flight paths from the receiver to the source. 
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covering this paper is acknowledged. 

119 
0021-9991/78/0262-0119$02.00/0 

Copyright 0 1978 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



120 CARTER, HORAK, AND SANDFORD 

The “backward” method is actually a Monte Carlo simulation of the equations 
that are adjoint to the four coupled transport equations for the Stokes’ parameters, 
and a description of the Monte Carlo calculation in the adjoint framework would 
seem to have the advantage of mathematical clarity. This formulation also provides 
a basis for algorithms that will simulate polarization effects in either the direct or 
adjoint mode. 

In this paper, we derive the equations adjoint to the four coupled transport equations 
for the Stokes’ parameters. A reciprocity relationship is obtained between a Green’s 
function four-vector and an adjoint Green’s function four-vector. This is similar to 
reciprocity in neutron transport [7] except that we obtain reciprocity between two 
four-vectors. The reciprocity relation enables a physical interpretation of the simi- 
larities and differences between Monte Carlo simulations of the direct and adjoint 
equations. The adjoint simulation is described in detail. 

2. STATEMENT OF THE DIRECT PROBLEM 

The vector transport equation for the Stokes’ parameters, as derived by 
Chandrasekhar [8 1, is 

2n KP@) l 
4rr J-s WI-J, 4; P’, 4’) i@, p’, +‘> dp’ d& = $6 p, $1, 

-1 0 
(1) 

where 1 is the intensity vector with the four components (I,, I,, U, V), P is a four by 
four matrix, K is the mass absorption coefficient, p is the density of the material, 
3 is an extraneous source vector, i: is the position vector, and 2 is a unit photon 
propagation (flight) vector defined by the cosine of the polar angle, p = cos 8; 
and I#, the azimuth angle. The notation will subsequently be simplified by allowing R 
to denote both the space position and the direction of flight; i.e., R --+ F, p, 4; or 
equivalently, R -+ F, 2. 

The purpose of the calculation is assumed to be the computation of a response 
vector denoted by F. The definition of a response vector as 

@ = 
s 

A(R) i(R) dR, (2) 

will become apparent when we later consider the adjoint equation. In Eq. (2), A(R) is 
a diagonal response matrix, the elements of which depend upon the quantity of 
interest. For example, if the AI1 element of the matrix was defined as 

-4, = &R - %I, (3) 

then the first element of the vector-F would represent the parallel intensity component, 
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I@,,). The delta function notation in Eq. (3) is understood to symbolize a product 
of Dirac delta functions in space and direction: 

w - 4) = S(x - x0) S(Y - Yo) S(z - ZlJ & - E”o) S(#J - 43). (4) 

A Green’s function will be defined for the direct vector transport equation in order 
to later introduce reciprocity. To compact the notation, an operator L is defined for 
Eq. (1) such that 

Li(R) = S(R). (5) 

A Green’s function vector, G, is then required to satisfy the equation 

L@R; R’) = 6(R - R’) $R’), (6) 

where each of the four elements of the vector 9 is multiplied by the delta function. 
The principle of superposition allows the intensity vector to be expressed as 

i(R) = j @R; R’) dR’, (7) 

provided that the vector G satisfies the same boundary conditions as the vector 1. 
The expression for the intensity in Eq. (7) may be utilized in Eq. (2) to express the 

response vector as 

p = 
ss 

A(R) @R; R’) dR’ dR. (8) 

3. DERIVATION OF THE ADJOINT VECTOR EQUATION 

A vector equation for the adjoint intensity vector, it, is obtained by finding an 
operator, L+, such that 

ji;(R) Li(R) dR - jf(R) Ltit(R) dR = 0, (9) 

where each tilde mark denotes a transpose. A satisfactory Lt is postulated such that 
its operation on it gives 

L+i+(R) = -2. @‘it(R) f #y(F) i+(R) 

- q jp(& ;) it@, ;') &' = S+(R), (10) 

where the adjoint source four-vector, St, will be discussed later. The boundary 
conditions for it are chosen to be consistent with those for 1 and are such that the 
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bilinear concomitant [7] is zero term by term; i.e., on the outer surface of the system: 

and 

i(R) = si 

i+(R) = a 

for 2 inward 

for i’ outward, 

(10 

w 

where 6 is a vector whose elements are zero. 
The proof, that Eq. (9) is satisfied by the operators L+ of Eq. (10) and L of Eq. (5), 

may be given term by term. We first multiply Eq. (5) on the left by j+(R) dR, multiply 
Eq. (10) on the left by ?(R) dR, extract the difference of the resulting two equations, 
and integrate this difference over all of phase space. The resluting leakage, attenuation, 
and scattering terms are considered separately: 

Leakage Term 

This term consists of a sum of individual terms of the form 

s [I,+(R) 2 . a Ii(R) + Ii(R) 2 . a I,(R)] dR, (13) 

wherej denotes thejth element of the vector. From the vector differentiation sum rule, 
this is simply 

s 9 . {t If+(R) Ii(R)} dR. (14) 

The divergence theorem may be utilized to change to a surface integral, which 
vanishes due to the boundary conditions of Eqs. (11) and (12). 

Attenuation Term 

This term consists of a sum of individual terms of the form 

I [Ij+(R) K/I(?) I,(R) - Ii(R) K@) Ii+(R)] dR. 

Each such term is clearly identically zero since the scalar integrand is zero. 

Scattering Term 

The scattering term may be written as 

& JIJKp(F)(i’(?, t) P($ 2’) i((7,d’) 

(15) 

(16) 
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where the integration variables Tt have been inverted with ;’ in the &It term, The 
integrand is zero due to the matrix identity 

(17) 

This proof that the operators L and Lt satisfy Eq. (9) may be utilized to obtain a 
reciprocity relationship. 

4. RECIPROCITY 

The adjoint Green’s function vector is required to satisfy the equation 

L+@(R; R”) = 6(R - R”) S+(R”). (18) 

It is also required to satisfy the same boundary conditions as it. The adjoint source 
vector, St, is as yet unspecified. 

A reciprocity relation is obtained by multiplying Eq. (6) on the left by &(R; R”) dR, 
multiplying Eq. (18) on the left by G(R; R’) dR, extracting the difference of the 
resulting two equations, and integrating this difference over all of phase space. The 
application of Eq. (9) for the Green’s function vectors, rather than for the intensity 
vectors, removes all terms involving L and Lt. The two terms remaining give the 
reciprocity relation 

&R; R’) St(R) = &(R’; R) S(R’). (19) 

The above proof could just as easily be repeated for each individual component 
of the vector. The result of such an operation is that 

G(R; R’)* St(R)j = Gt(R’; R)j S(R’)j (j = 1,2, 3,4). (20) 

The adjoint source vector has not been specified so we are free to choose its 
components. In order to relate an adjoint simulation to the response vector, we need 
to express the response vector of Eq. (8) in terms of the adjoint Green’s function 
vector; i.e., express A(R) c(R; R’) as some function of @. This is accomplished 
by requiring that S+(R) satisfy the relation 

(21) 

where A(R) is the response matrix that was utilized in Eq. (8). Similarly, a diagonal 
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matrix B is defined such that its diagonal components are equal to the components 
OfS, 

(22) 

These definitions and the reciprocity relationships of Eq. (20) yield the vector equality 

A(R) t?(R; R’) = B(R) G+(R’; R). (23) 

Equation (22) may finally be utilized in Eq. (8) to express the response vector in 
terms of the adjoint Green’s function vector as 

F = JIB(R) G+(R’; R) dR dR’. (24) 

The response vector, F, in Eq. (24) may clearly be computed by obtaining a numerical 
solution of the adjoint Green’s function vector equation (18). 

5. SAMPLING THE ADJOINT EQUATION 

A. General Considerations 

The adjoint Green’s function vector equation (18) has a slightly different form than 
the direct Green’s function vector equation (6). We are interested in sampling from 
Eq. (18) so it would be pertinent to first transform it into an equation that has the 
identical form of the direct equation, since we already know how to sample from such 
an equation. This type of an approach has been found useful for sampling from the 
adjoint neutron transport equation [9, lo]. 

The primary difference between Eqs. (18) and (6) is the sign of the leakage term. 
Therefore, the direction coordinate is reflected in Eq. (18) and a new vector gt is 
defined as 

g’tp, 2; i;“, 2”) = &(F, -;; PI, -2”). (25) 

Then Eq. (18) may be written as 

;t . @+(R; R”) + Kp(i’> s’+(R; R”) 

_ E!?g jp(-2’; -2) g’+(?, f’; R”) d;’ 

= 6(? - P”) a(--; - 2”) i?+(F). (26) 

Equation (26) has the identical form of the vector transport equation (6). The 
transformed vector, g+, also satisfies the same boundary condition on the outer 
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surface as G+, i.e., no incoming current. Therefore, the sampling of the transformed 
adjoint equation (26) parallels a sampling of the direct vector equation with an 
altered scattering kernel and a reflection of the direction of flight coordinates in the 
extraneous source term. The scattering kernel matrix has been transposed, the 
direction of flight in the kernel has been reflected, and the primed and unprimed 
direction of flight variables in the kernel have interchanged roles for the sampling. 

Equation (26) has been obtained by Collins and Wells [I] by making coordinate 
transformations to the direct vector equation. This approach, termed the “backward” 
Monte Carlo method, is valid for coherent scattering problems because the time 
invariance of the Maxwell’s equation yields the reciprocity relation [l 11: 

P(-2’; -2) = P(;f; 2). 

The sampling of the adjoint equation (26) may therefore be viewed entirely from the 
standpoint of reciprocity (coordinate transformation) where particles originate 
at the detector and scatter according to a reciprocal phase matrix. 

B. Sampling a New Direction at a Scattering Collision 

The postcollision direction of flight coordinates, i(p, $)>, given the precollision 
direction of flight coordinates, t’($, +‘), may be sampled with any density function 
that is greater than zero for all values of p and 4. The particle vector weight is 
altered at each collision in such a manner as to yield unbiased results for the particular 
density function that is utilized. A reasonable choice of a density function is one that 
is proportional to the total postcollision adjoint intensity. This density function may 
be written as 

(27) 

where in the Monte Carlo calculation g(?, 2’) is a vector containing the four weights 
in the adjoint sampling upon entering the collision, and 3 is the row vector 

x’ = (1 1 0 0). (28) 

For the special case of Rayleigh scattering, the density function of Eq. (27) is 
almost the same as the corresponding density function that occurs for sampling 
from the direct vector equation. In the Appendix we discuss Boson scattering from 
spherical centers and compare the direct and adjoint density functions. Schemes are 
presented for sampling from these density functions. 

The four weights after the collision are obtained as 

Fqi;,t> = F( -2; -a> Fv( F, 2) 
47rf(.z’; 2) 

3 

where the t(p, 4) in Eq. (29) is the final propagation direction vector selected at the 
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collision using the density function f. It should be emphasized that the density 
function f need not be chosen to satisfy Eq. (27). The weight vector modification 
given by Eq. (29) will produce unbiased results for any choice of the density function 
as long as f is greater than zero for any choice of Z(p, 4). For complicated interactions, 
a useful simplification is to setfto the corresponding density function that is obtained 
by ignoring polarization effects. Then a one-dimensional table is all that is required 
for sampling ;(p, I#J) in an isotropic media. 

C. Sampling Initial Source Particle Coordinates 

The relation of Eq. (25), between the transformed adjoint Green’s function vector 
and the adjoint Green’s function vector, may be utilized to express the response 
vector of Eq. (24) as 

F = JjjB(,, 2) s’+(?, -2; ?‘, -;t’) d? dzd?’ a. (30) 

Since the source term for g+ depends upon the receiver, the integrand in Eq. (30) 
is nonzero only if the primed variables correspond to the receiver position in phase 
space. Hence, the initial spatial position in the adjoint simulation may be selected 
randomly within the spatial volume of the receiver, and the direction of flight may 
also be selected randomly within the solid angle of propagation incident on the 
receiver. This direction of flight is then reflected, due to the reflection in direction that 
occurs in the adjoint source term of Eq. (26), and the initial four-vector weight is 
given by 

i?= S+(T’, -2”) 
s 

dR, (31) 
vR 

where i;” was the initial position selected and -$“(p”, $“) is the initial direction 
vector selected prior to reflection. The integration in Eq. (31) is defined to be over 
the phase space volume of the receiver. The initial vector weight, m, of Eq. (31) 
yields the correct expectation values in a volume element dR about R since these 
are 

E( v) in dR” about R” = 

which is 

E(m) = (+)~+(?“, -2”) j, dR) , 

or 
E( @) = g+(i;“, -?‘) dR”. (32) 

This is in agreement with the source term of Eq. (26) and the observation that there 
are no factors other than g+ in Eq. (30) that depend upon the primed variables. 
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A situation of particular interest occurs when each element of St is a product of 
Dirac delta functions in both position and direction of propagation. The response 
vector, F, then represents the intensity vector at a space point for a fixed direction of 
propagation (the Stokes’ intensities at a detector). If St is given by 

1 

St@“, p”, cf) = S(F” - 2’) S(2 - 2) ; 

ij 

) 

1 

(33) 

the appropriate limit of Eq. (31) may be taken for square waves increasing in heights 
and decreasing in widths so as to approach Dirac delta functions, resulting in initial 
coordinates for the Monte Carlo of (?‘, -2’) and the initial weight vector: 

1 

iv= ; ) 

ii 1 

(34) 

which are the initial source particles employed by Collins and Wells [l]. 

D. Estimation 

A collision estimator will be considered for the scoring. An unbiased estimate of 
g’+(R; R”) Kp(?) dR is given by 

g’+(R; R”) Kp(?) dR = c WC 
I 

(35) 

where @i is the weight vector at the ith collision and the summation is over all 
collisions that occur in dR about R. The weight vector, @, is obtained from the 
initial weight vector given by Eq. (31) and the product of the changes in this weight 
vector at each collision as given by Eq. (29). Then from Eqs. (30) and (35), the contri- 
bution to the functional four-vector at each collision point, R, is given by 

[l/Kp(?)] B(F, -:) p, (36) 

where m is the vector weight at the collision point and B is defined by Eq. (22). The 
matrix B is a diagonal matrix whose diagonal components are the components of the 
photon source vector, 3. The source s could be an extraneous source or, alternatively, 
it is sometimes convenient to define [S] 9 as the source due to photons emerging from 
their first collision after being emitted by the extraneous source. In this latter case, the 
functional P will not include any contribution from these photons that are emitted 
by the extraneous source and that subsequently reach the receiver before suffering 
a collision. If this first flight contribution is also to be included, it must be added to 
the Monte Carlo results [4]. This first flight contribution may often be computed 
numerically, but it can also be computed with the Monte Carlo method if necessary. 
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6. NUMERICAL RESULTS 

To numerically compare the adjoint and direct Monte Carlo methods we consider 
the plane-parallel, Rayleigh-scattering, conservative, emitting atmosphere with 
uniform distribution of sources. This problem is solved exactly in Horak [14] and his 
analytic solution has been numerically evaluated by Sandford and Pauls [4]. We 
compare adjoint and direct method results from our test program with analytic 
evaluations provided us by Pauls. 

The test problem follows from Eq. (1) when 

t * a = p(d/d4), tcp dk = dr, dw = d/i dp’, 

and + * 
s = Kp’,,& , 

where p is the emergent angle cosine, T is the optical depth, c0 is the source constant, 
and 1, is the unpolarized unit intensity vector. Equation (1) becomes 

(37) 

The formal solution of (37) with zero incident intensity at 7 = 71 is: 

which may be written as 

(39) 

to define a diffuse intensity component containing only scattered photons. The 
diffuse component consists of the summation of intensities I,(O, p) from each 
scattering order: 

I@, p)diffuse = 5 hz(o, f.L). 
n=1 

(40) 

Referring to Fig. 1, we write the analytic expression for the first-order (n = 1) 
intensity: 

where CL’ = COS(Z- - 6). Repeated random sampling of (41) to obtain successive 
scattering orders effects a Monte Carlo solution for the diffuse intensity. 

The direct Monte Carlo integration of (41) consists of sampling the integration 
variable 7 and t from exponential distributions, and initializing a source particle at 
optical depth t with the flight direction cosine p’ sampled from the isotropic distri- 
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F= cosd 

f-0 

------_ 7= t 
& (Source Volume) 

----- 2,. f 
dV (Scattering Volume) 

FIG. 1. Plane parallel single scattering geometry. 

bution. The initial particle vector is &, times bias factors that may be needed for the 
sampling scheme used. Estimates of the single-scattered intensity are made for each 
emergent cosine p by multiplying the particle vector weight by the phase matrix for 
the angle W(T, t, p”, 11’) and a scalar scoring factor: 

(l/p) C-(7/P)P(W) W R’ (42) 

Subsequent scattering orders are estimated by sampling a value for 13 (Fig. 1) and 
a new 7 value for the depth of the next collision. These are sampled from the phase 
matrix and exponential density functions as required by (38). The particle is propa- 
gated to the next collision by application of rotation matrices to the vector weight, 
and estimates of the intensity scattered to the emergent cosines (p-values) are again 
made. This process is repeated for N collisions of A4 independent particles, and the 
emergent intensity estimate is: 

i(o, p)diffuse G $j f g j,“(o, p). 

nz=l n=1 
(43) 

As discussed in Section 5, the adjoint method randomly samples the reciprocal 
intensity. Thus, the statistical particle originates at the detector with unit vector weight 
I,, and enters the atmosphere with direction cosine -p. The collision depth T (Eq. (41) 
is sampled from the exponential distribution and the direction cosine p’ to the source 
point is sampled isotropically. The source is scored at each collision by sampling t 
from density dt and evaluating the scalar EOe-(+t)/u’. The scattered intensity in the 
emergent direction cosine TV is estimated with 

E&(7-t)/@‘) p(w) vn , (44) 

where @m is the particle weight vector at the nth collision. The particle is propagated 
to the next collision by sampling 0 and T from the phase and exponential density 
functions and by performing the proper rotations. The estimate for the intensity 
scattered to emergent cosine p from the new collision is made by again scoring the 
source and evaluating the estimator (44). All scattering orders estimated for a single 
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statistical particle contribute to the same emergent cosine p. By computing Ncollisions 
of A4 particles the estimate (43) is obtained. 

The direct method uses the source distribution to initialize the statistical particle 
weights. These move randomly through the atmosphere and provide estimates of 
intensity scattered to all the desired emergent angles at each collision. The adjoint 
method uses the emergent angle distribution to initialize source particles of unit 
weight. These also move randomly through the atmosphere and at each collision 
one scores the source to provide estimates of the intensity scattered to their initial 
entrance direction. 

Figure 2 shows solutions obtained by direct and adjoint Monte Carlo for an 
atmosphere of thickness TV = 0.2. Both methods agree well with the exact solution 
for this thin case, using 25,000 particles and 7 scattering orders. Figure 3 shows 
solutions for a thickness TV = 2.0, using 125,000 particles and 7 scattering orders. 

0 0.1 0.2 03 04 05 06 07 08 0.9 IO 

EMERGENT ANGLE COSINE 

FIG. 2. Adjoint (bars) and direct (open circles) Monte Carlo solutions of diffuse intensity for 
71 = 0.2. The solid curve is the exact result. 

The direct method is noticeably deficient at small p because, when viewed at this 
angle, the atmosphere appears optically much thicker. The adjoint method compen- 
sates this by injecting particles at small angles and thereby obtaining better sampling 
of the small contributions from collisions at large distances. The direct estimator (42) 
is dominated by l/p at small p. The adjoint method is distinctly advantageous for 
computing the limb darkening of astrophysical bodies, where smaller values are 
needed. 

Figure 4 shows the case TV = 1.0, calculated with 25,000 particles and 7 collisions. 
The first and second scattering orders computed with the adjoint and direct methods 
are also shown. The error of the direct method is largely due to poor first collision 
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% 

z 1.8.. 
6 I 

0 0.1 02 0.3 0.4 0.5 0.6 07 08 0.9 I.0 

EMERGENT ANGLE COSINE 

FIG. 3. Adjoint (bars) and direct (open circles) Monte Carlo solutions of diffuse intensity for 
71 = 2.0. 

LO-- 

0 I 
0 0.1 02 03 04 05 06 07 08 09 IO 

EMERGENT ANGLE COSINE 

FIG. 4. Adjoint (bars) and direct (open circles) Monte Carlo solutions of diffuse intensity for 
q = 1.0. First and second scattering orders are also shown. 

estimates, but for Cl < p = = 0.1 the second-order intensity is also important to 
the total. The error of the adjoint method is distributed evenly through all scattering 
orders and a better adjoint result can be obtained by using more particles. It appears 
difficult to obtain good agreement by the direct method, even with more particles. 
The adjoint result shown is sufficiently smooth to allow determination of the p-value 
at the intensity maximum, but the direct solution gives a curve with no well-defined 
peak value. While the variance in the direct method can perhaps be improved, the 
adjoint method appears attractive for optically thick problems (TV 3 1.0). 



132 CARTER, HORAK, AND SANDFORD 

APPENDIX: BOSON SCATTERING FROM SPHERICAL CENTERS 

I. Introduction 

At a scattering event we employ the geometry shown in Fig. 5, where 1’ is the 
Stokes’ four-vector characterizing the plane electromagnetic wave incident on the 
scattering center with wavevector z’; and i is the Stokes’ vector characterizing the 
plane wave scattered with wavevector g. 

FIG. 5. Coordinates for single scattering by a particle at the origin. 

The Stokes’ vector, i’, is assumed to characterize the incident wave with reference 
to the incident meridian plane whose unit normal vector is 

3’ = (E’ x $)/sin O’, (A-1) 

where the unit propagation vector (Fig. 5) is 

ii?’ = -cos +’ sin 19’ 2 - sin 4’ sin 8’ 5 - cos 8’2. (A-2) 

The scattered Stokes’ vector, i, is referenced to the meridian plane whose unit normal 
vector is 

R = (IT: x Z)/sin 6, (A-3) 

where the unit propagation vector (Fig. 5) is 

R = cos 4 sin 02 + sin q3 sin Oj + cos 0% (A-4) 

The physics involved in the interaction of the incident wave and the matter is usually 
described with reference to the scattering plane whose unit normal vector is 

IV, = (K’ x @/sin(O), (A-5) 
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where 0 is the scattering angle defined by 

tan(@) = 1 Z’ X 13 ]/(Kt’ *Z). (A-6) 

II. Rotation Matrices 

To change the reference plane of a Stokes’ four-vector, one operates on the vector 
with a 16-element matrix [8]. Thus, the incident Stokes’ vector referenced to the 
scattering plane is 

i" = L(f) *I', (A-7) 

where x’ is the angle between the old and new reference planes (Fig. 5) defined by 

tan&‘) = j P x 2,$ I/@’ *Hi,), (A-8) 

and the rotation matrix [S] is: 

i 

cos2 XI sin2 x’ 4 sin 2x’ 0 

Ux’) = 
sin2 x’ cos2 x’ - + sin 2~’ 0 

-sin 2~’ sin 2x’ cos 2x' 0 ' 
0 0 0 1 I 

(A-9) 

if the components of ? are: I,‘, the intensity parallel to the reference plane; I,‘, the 
intensity perpendicular to the reference plane: 

and 
U’ = (It’ - I,‘) tan 201’, 

V’ = (I,’ - I,‘) tan 28’ set 201’, 

where 01’ is the angle of polarization and #?’ is the eccentric angle. We therefore obtain 
for Eq. (A-7): 

(I!’ cos2 x’ + I,’ sin2 x’ + (V/2) sin 2x’) 
j,, = (It’ sin2 x’ + 1,’ cos2 x’ - (V/2) sin 2x’) 

(-It’ sin 2x’ + 1,’ sin 2x’ + U’ cos 2x') 
I 

. 
(A-10) 

V’ 

III. Scattering Interaction 

For a scattering center possessing spherical symmetry, the interaction is described 
[12] by a scattering matrix of the form 

44 0 0 0 

S(0) a,(@) 0 = [ 8 

o 
4@ -u.+(O) ' 

0 0 u4m 0 I 4% 

(A-11) 

$3x/26/2-2 
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which is normalized by the relation 

It I n sin(O)[o,(@) + Us] &I = 1.0. 
0 

The scattered Stokes’ vector referenced to the scattering plane is given by 

(A-12) 

which expands as: 

jfff = s(@) . i”, (A-13) 

(Ze’a, co? x’ + Z*‘a, sin2 x’ + (U’o,/2) sin 2x’) 

P = 

L 

(Ze’a2 sin2 x’ + Z&‘a, cos2 x’ - (U’a,/2) sin 2x’) (-z, 
t u3 sin 2x’ + Z*‘cr, sin 2x’ + U’a, cos 2x’ + V’O,) 

(Ze’u, sin 2~’ - Z,’ u4 sin 2x’ - U’U, cos 2~’ + V’U,) I 
’ (A-14) 

This Stokes’ vector must be rotated through the angle x to reference it to the scattering 
meridian (Fig. 5). The rotation angle is defined by 

tanx = IR, xHl/(A;N). (A-15) 

We therefore obtain 
i = L(~) . il”, (A-16) 

the expansion of which is shown in Fig. 6. The scattered Stokes’ vector may be written 
as 

i = qx’, 0, x) . i’, (A-17) 
where 

P = L(x) . S(0) * L(x’), (A-18) 

is the phase matrix appearing in the equation of radiative transfer [Eq. (l)]. The 
variables (x, 0, x’) are clearly related to I*’ = cos 8’, ,U = cos 0, 4, and 4’ by 
Eqs. (A-6), (A-7), and (A-15); so that 

P = P(/.&, 4; /L’, 4’) = P(Z, t’). 

IV. Random Sampling 

The direct density function for sampling (,u, 4) is: 

(A-19) 

where v, the weight vector entering the collision, is identified with the incident 
Stokes’ intensities: 

W z iI, 
and 

.z = (I 1 0 0). 
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IL = r1; (CT1 cos2x~ cos*y, + u2 sin*X' sin2X - u3 
7j-- sin2x' sin2x) 

+ I:, b, sin2x' cos2x + a2 cos2xt sin2X + u3 r sin2x' sin2x) 

- "& (U1 sin2x' cos2x - a2 sin2x' sin2X + u3 ccos2x’ sin2x)l 

Ih = {Ii (ul cos2x~ sin2x + c 2 sin2X' cos2x + a3 F sin2x' sin2x) 

+ 1; (ul sin2x' sin2X + u2 cos2xr cos2x - O3 F sin2x' sin2x) 

1 g (~3~ sin2x' sin2X' - u2 sin2x' cos2x - u3 cos2x' sin2x)l 

u = 11; (U1 cos2xf sin2X - u2 sin2x’ sin2x + O3 sin2x' cos2x) 

+ 1: (U1 sin2x' sin2x - a2 cos2yJ sin2x - u 3 sin2x' cos2x) 

- u; r b1 + 02) sin2x' sin2x - u3 cos2x' ~0~2x1~ 

v = EI; u4 sin2x’ - 1; o4 sin2X’ - U’ f14 cos2X’ + V’ U,l 

FIG. 6. Stokes’ parameters for light scattered by the geometry shown in Fig. 1. 

Expanding Eq. (A-19) using Eq. (A-17) and the relations in Fig. 6, we obtain: 

d = ( 4T(zt’l+ Z,‘) ) I . Zc’(u, COG x’ + u2 sin2 x’) 

+ Ze’(aI sin2 x’ + u2 cos2 x’) + -& sin 2x’(a, - g2)/ . (A-20) 

This equation shows that one may sample the angles (x’, 0) as equivalent to sampling 
(l-4 $1. 

The density function for adjoint sampling is [Eq. (27)]: 

f= 2 . p-7; -2) - W(F; 2) 
4xx . i@.;Z’) __ * 

We write the adjoint phase matrix with the aid of Eq. (A-18): 

P = z(y) . S(0) * Z(x). 

Inspection of Eq. (A-l 1) reveals: 

S(0) = q-u,(o)]. 

(A-2 1) 

(A-22) 
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Thus we obtain 

P(Z, Ti) = Z(f) * S(-U‘J - L(x). (A-23) 

Inspection of Fig. 5 or analysis with Eqs. (A-6), (A-7), and (A-15) shows that the 
angles x’, 0, and x are invariant under the reciprocity introduced by 2 -+ -t and 
2’ -+ -2’. Thence, we obtain for the adjoint density function: 

f = ( 4n(zft1+ I,‘) 1 {&‘(a, cos2 x + u2 sin2 x) 

+ Z4’(a, sin2 x + u2 cos2 x) - U sin 2x(u1 - a,)}, (A-24) 

which shows that one may sample the angles (x, 0) as equivalent to sampling (p, $). 
The adjoint and direct density functions are seen to have similar functional form 
when they are expressed in terms of rotation and scattering angles. The transfor- 
mations to (p, C#J) of the random variables (x, 0) or (x’, 0) produce different distri- 
butions than those given by Eqs. (A-20) and (A-24). The sign reversal of ~~(0) in the 
adjoint scattering matrix [Eq. (A-22)] indicates that the scattered adjoint weight 
vector [Eq. (29)] has the opposite helicity of a direct beam. These properties of the 
adjoint density function are due to the invariance of Maxwell’s equations under 
time reversal. We emphasize that they hold only in the special case of coherent 
scattering from spherical particles. 

V. Rejection Sampling 

We may sample the density functions d or f by defining the marginal density 
functions hf,d(0); and qr,&, O), the corresponding conditional density functions 
for x. The following definitions result [13]: 

h,(@) = j-2”jcx, 0) dxx; h,(O) = s'" d(x', 0) dx’; (A-25) 
0 0 

and 
qAx, @> = ftx, @)/h,t@; qdx, 0) = 4x9 @MdW (A-26) 

Integrating Eq. (A-25) yields the same result for both marginal density functions: 

and 
hf,cd@) = Hud@) + u,(@)lv 

x (VI : u2) 1 [ 
&‘(u, cos2 x + u2 sin2 x) 

+ Z&‘(u, sin2 x + u2 cos2 x) + g - 1) U’ 

x Co1 - 02) sin 2x] 1 , (A-27) 
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where s = 0 for q, and s = 1 for qd . In the case of unpolarized incident light 
(1; = 1.’ = 1; U’ = 0) we obtain 

9fAX, 0) = 1/2T (unpolarized light), 

which indicates x is uniform on (0,27r). The conditional density functions may be 
sampled with the rejection scheme given in Fig. 7. 

FIG. 7. Rejection scheme for sampling the conditional density functions given by Eq. (A-27). 
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